【題目】若函數(shù) 沒有零點(diǎn),則實(shí)數(shù)a的取值范圍是

【答案】(﹣2,e)
【解析】解:當(dāng)x<0時(shí), ,

當(dāng)x∈(﹣∞,﹣1)時(shí),f'(x)>0,f(x)單調(diào)遞增,

當(dāng)x∈(﹣1,0)時(shí),f'(x)<0,f(x)單調(diào)遞減,

所以當(dāng)x=﹣1時(shí),f(x)取得極大值f(﹣1)=﹣2﹣a,根據(jù)題意,﹣2﹣a<0,a>﹣2;

當(dāng)x≥0時(shí),f'(x)=ex﹣a,當(dāng)a∈(﹣2,1]時(shí),f'(x)≥0,f(x)單調(diào)遞增,

所以fmin(x)=f(0)=1>0,滿足題意;

當(dāng)a>1時(shí),令f'(x)=0,得x=lna,

當(dāng)x∈[0,lna)時(shí),f'(x)<0,f(x)單調(diào)遞減,

當(dāng)x∈(lna,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增,

所以當(dāng)x=lna時(shí),f(x)取得極大值f(lna)=a﹣alna,根據(jù)題意,a﹣alna>0,

所以1﹣lna>0,lna<1,a<e,

∴a∈(1,e),

綜上所述,實(shí)數(shù)a的取值范圍是(﹣2,e).

故答案為:(﹣2,e).

在分段函數(shù)上根據(jù)不同的解析式進(jìn)行討論,求導(dǎo)根據(jù)單調(diào)性,得出極值,可得a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:“存在x0∈[1,+∞),使得(log23) ≥1”,則下列說法正確的是( 。
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(﹣∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點(diǎn)P(﹣4,﹣2)的直線l的參數(shù)方程為 (t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD為平行四邊形,∠A=60°,線段AB上點(diǎn)F滿足AF=2FB,AB長(zhǎng)為12,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點(diǎn)D在平面BCEF上的射影恰在直線BC上.

(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DE與平面BCEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點(diǎn).

(1)求證:AB⊥PM;
(2)若N是PB的中點(diǎn),且AN∥平面PCM,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩坐標(biāo)系中的單位長(zhǎng)度相同,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線 (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x= a上的任意一點(diǎn),且( + =2.

(Ⅰ)求橢圓C的方程;
(Ⅱ)過F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動(dòng)直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入( 。

A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={1,2,…,100},TU.對(duì)數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a
例如:當(dāng)an=2n,T={1,3,5}時(shí),ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當(dāng)T={2,3}時(shí),ST=12,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案