已知數(shù)列,滿足,,,且對任意的正整數(shù),當時,都有,則的值是

A. 2012    B. 2013     C. 2014      D. 2015

 

【答案】

D

【解析】

試題分析:由,,可得,以此類推為等差數(shù)列,公差為1,考點:數(shù)列求和

點評:先由數(shù)列前幾項推測出通項,進而帶入相應的公式求解

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列an滿足:a4n+1=1,a4n+3=0,a2n=an,n∈N*,則a2011=
0
;a2018=
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an滿足a1=2,
an+1
2an
=1+
1
n
;
(Ⅰ)求數(shù)列an的通項公式;
(Ⅱ)若數(shù)列{
an
n
}
的前n項和為Sn,試比較an-Sn與2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①命題p:?x0∈[-1,1],滿足x02+x0+1>a,使命題p為真的實數(shù)a的取值范圍為a<3;
②代數(shù)式sinα+sin(
2
3
π+α)+sin(
4
3
π+α)
的值與角α有關;
③將函數(shù)f(x)=3sin(2x-
π
3
)
的圖象向左平移
π
3
個單位長度后得到的圖象所對應的函數(shù)是奇函數(shù);
④已知數(shù)列an滿足:a1=m,a2=n,an+2=an+1-an(n∈N*),記Sn=a1+a2+a3+…+an,則S2011=m;其中正確的命題的序號是
 
 (把所有正確的命題序號寫在橫線上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N)

(1)求數(shù)列an的通項公式an
(2)設bn=
1
a
2
n
,求數(shù)列bn的前n項和Sn
(3)設cn=ansin
(2n-1)π
2
,數(shù)列cn的前n項和為Tn.求證:對任意的n∈N*,Tn
4
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an滿足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并求證:a2m+1+2=2(a2m-1+2),(m∈N*);
(2)設bn=
a2n
a2n-1
Sn=b1+b2+…+bn
,求證:Sn<n+
5
3

查看答案和解析>>

同步練習冊答案