14.某校為了解一個(gè)英語教改實(shí)驗(yàn)班的情況,舉行了一次測(cè)試,將該班30位學(xué)生的英語成績進(jìn)行統(tǒng)計(jì),得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出該班學(xué)生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(Ⅱ)從成績低于80分的學(xué)生中隨機(jī)抽取2人,規(guī)定抽到的學(xué)生成績?cè)赱50,60)的記1績點(diǎn)分,在[60,80)的記2績點(diǎn)分,設(shè)抽取2人的總績點(diǎn)分為ξ,求ξ的分布列.

分析 (Ⅰ)由頻率分布直方圖能求出眾數(shù)、平均數(shù)和中位數(shù).
(Ⅱ)依題意,成績?cè)赱50,60)的學(xué)生數(shù)為2人,成績?cè)赱60,80)的學(xué)生數(shù)為10人,ξ可取的值為2,3,4,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.

解答 解:(Ⅰ)由頻率分布直方圖可知:眾數(shù)為85.
平均數(shù)為:55×$\frac{2}{30}+65×\frac{4}{30}+75×\frac{6}{30}+85×\frac{10}{30}+95×\frac{8}{30}$=81,
∴該班學(xué)生英語成績的平均數(shù)為81.
設(shè)中位數(shù)為x,由頻率分布直方圖,得:
[50,80)內(nèi)的頻率為($\frac{2}{300}+\frac{4}{300}+\frac{6}{300}$)×10=0.4,[80,90)內(nèi)的頻率為$\frac{10}{300}×10$=$\frac{1}{3}$,
∴中位數(shù)x=80+$\frac{0.5-0.4}{\frac{1}{3}}×10$=83.
(Ⅱ)依題意,成績?cè)赱50,60)的學(xué)生數(shù)為30×$(\frac{2}{300}×10)=2$,
成績?cè)赱60,80)的學(xué)生數(shù)為30×$(\frac{4}{300}×10+\frac{6}{300}×10)$=10,
∴成績低于80分的學(xué)生總?cè)藬?shù)為 12,
∴ξ可取的值為2,3,4,
P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{12}^{2}}$=$\frac{1}{66}$,
P(ξ=3)=$\frac{{C}_{2}^{1}{C}_{10}^{1}}{{C}_{12}^{2}}$=$\frac{20}{66}$,
P(ξ=4)=$\frac{{C}_{10}^{2}}{{C}_{12}^{2}}$=$\frac{45}{66}$,
∴ξ的分布列為:

ξ234
P$\frac{1}{66}$$\frac{20}{66}$$\frac{45}{66}$
∴ξ的數(shù)學(xué)期望E(ξ)=2×$\frac{1}{66}+3×\frac{20}{66}+4×\frac{45}{66}$=$\frac{11}{3}$.

點(diǎn)評(píng) 本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+x+a(a∈R).
(1)當(dāng)a=1時(shí),解不等式f(x)≥3;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從編號(hào)為0,1,2,…,89的90件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量是9的樣本.若編號(hào)為36的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號(hào)為86.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),$\overrightarrow{c}$=(a,0),且$\overrightarrow{c}$⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則實(shí)數(shù)a=( 。
A.1B.0或1C.3D.0或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知角α終邊經(jīng)過點(diǎn)P(3,2).
(Ⅰ)求$\frac{sin(π-α)+4cos(π+α)}{2sin(\frac{π}{2}-α)-3cos(\frac{π}{2}+α)}$的值;
(Ⅱ)求tan(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{x}{x+1}+\frac{x+1}{x+2}$的對(duì)稱中心為(-1.5,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直角△ABC,AB=AC=3,P,Q分別為邊AB,BC上的點(diǎn),M,N是平面上兩點(diǎn),若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,且直線MN經(jīng)過△ABC的外心,則$|\overrightarrow{BP}|$=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下四個(gè)命題正確的個(gè)數(shù)( 。
①用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”時(shí)正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)關(guān)于實(shí)軸對(duì)稱;
③在回歸直線方程$\stackrel{∧}{y}$=-0.3x+10中,當(dāng)變量x每增加一個(gè)單位時(shí),變量$\stackrel{∧}{y}$平均增加0.3個(gè)單位;
④拋物線y=x2過點(diǎn)($\frac{3}{2}$,2)的切線方程為2x-y-1=0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在2016的中間嵌入一個(gè)數(shù)字得到五位數(shù)20□16,若此五位數(shù)能被7整除,則嵌入的數(shù)字□為2或9.

查看答案和解析>>

同步練習(xí)冊(cè)答案