已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),滿足條件f(1+x)=f(1-x),且方程f(x)=x有等根.         
(1)求f(x)的解析式;         
(2)當x∈[1,2]時,求f(x)的值域.
分析:(1)由f(1+x)=f(1-x),可得函數(shù)的對稱軸為x=1,由f(x)=x有等根,得判別式△=0,聯(lián)立方程即可.
(2)將拋物線進行配方,利用對稱軸和區(qū)間[1,2]的關系確定函數(shù)的值域.
解答:解:(1)∵f(1-x)=f(1+x),
∴二次函數(shù)f(x)的對稱軸為x=-
b
2a
=1
①,
又∵方程 f(x)=x有等根,即ax2+(b-1)x=0有等根,
∴△=(b-1)2-4a•0=0②,
由①②得:b=1,a=-
1
2
,
∴f(x)的解析式為:f(x)=-
1
2
x2+x

(2)由(1)知:f(x)=-
1
2
x2+x
=-
1
2
(x-1)2+
1
2

f(x)=-
1
2
(x-1)2+
1
2

顯然函數(shù)f(x)在[1,2]上是減函數(shù),
∴x=1時,ymax=
1
2
,x=2時,ymin=0,
∴x∈[1,2]時,函數(shù)的值域是[0,
1
2
]
點評:本題主要考查二次函數(shù)的圖象和性質,以及利用待定系數(shù)法法求二次函數(shù)的解析式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案