(2011•南通一模)選修4-2:矩陣與變換
曲線(xiàn)C1:x2+2y2=1在矩陣M=
12
01
的作用下變換為曲線(xiàn)C2,求C2的方程.
分析:設(shè)P(x,y)為曲線(xiàn)C2上任意一點(diǎn),P′(x′,y′)為曲線(xiàn)x2+2y2=1上與P對(duì)應(yīng)的點(diǎn),根據(jù)矩陣變換得出
x′=x-2y
y′=y
結(jié)合P′是曲線(xiàn)C1上的點(diǎn),求得C2的方程即可.
解答:解:設(shè)P(x,y)為曲線(xiàn)C2上任意一點(diǎn),P′(x′,y′)為曲線(xiàn)x2+2y2=1上與P對(duì)應(yīng)的點(diǎn),
12
01
x′
y′
=
x
y
,得
x=x′+2y′
y=y′

x′=x-2y
y′=y
(5分)
∵P′是曲線(xiàn)C1上的點(diǎn),
∴C2的方程(x-2y)2+2y2=1.(10分)
點(diǎn)評(píng):本題考查幾種特殊的矩陣變換,體現(xiàn)了方程的數(shù)學(xué)思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通一模)設(shè)m,n為空間的兩條直線(xiàn),α,β為空間的兩個(gè)平面,給出下列命題:
(1)若m∥α,m∥β,則α∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,n∥α,則m∥n;
(4)若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號(hào)是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通一模) 選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60°,∠BAC=40°.作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通一模)選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線(xiàn)C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線(xiàn)C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通一模)選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
n
+…+
C
n
n
n(2n-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案