【題目】已知函數(shù)fxlg)(a>1>b>0

1求函數(shù)yfx的定義域;

2在函數(shù)yfx的圖象上是否存在不同的兩點(diǎn),使過此兩點(diǎn)的直線平行于x軸;

3當(dāng)a、b滿足什么關(guān)系時,fx在區(qū)間上恒取正值.

【答案】12不存在;3

【解析】

試題分析:1的定義域?yàn)?/span>;2設(shè),,

在區(qū)間上是增函數(shù).假設(shè)函數(shù)的圖象上存在不同的兩點(diǎn)、,使得直線平行于,,,這與是增函數(shù)矛盾函數(shù)的圖象上不存在不同的兩點(diǎn),使過此兩點(diǎn)的直線平行于;32,在區(qū)間上是增函數(shù)當(dāng),只需,在區(qū)間上恒取正值.

試題解析: 1,因?yàn)?/span>,所以所以,即函數(shù)的定義域?yàn)?/span>

2設(shè),因?yàn)?/span>所以,,所以于是,,因此函數(shù)在區(qū)間上是增函數(shù).假設(shè)函數(shù)的圖象上存在不同的兩點(diǎn),使得直線平行于,,這與是增函數(shù)矛盾.故函數(shù)的圖象上不存在不同的兩點(diǎn),使過此兩點(diǎn)的直線平行于軸.

32在區(qū)間上是增函數(shù),所以當(dāng),故只需,,所以當(dāng),在區(qū)間上恒取正值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間上的平底型函數(shù).

1)判斷函數(shù)是否為上的平底型函數(shù)?

2)若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,其中為自然對數(shù)的底數(shù).

)求函數(shù)的解析式;

)當(dāng)時,分別求出曲線切線斜率的最小值;

)設(shè),證明:當(dāng)時,曲線在曲線之間,且相互之間沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個實(shí)數(shù)ab、c成等差數(shù)列且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求出這三個實(shí)數(shù)ab、c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】p,q為簡單命題,則“pq為假“pq為假的(

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且a2=2b.

(1)求橢圓的方程;

(2)直線l:x﹣y+m=0與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使線段AB的中點(diǎn)在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國人民代表大會在北京召開,為了搞好對外宣傳工作,會務(wù)組選聘了16名男記者和14名女記者擔(dān)任對外翻譯工作.調(diào)查發(fā)現(xiàn),男、女記者中分別有10人和6人會俄語.

(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

會俄語

不會俄語

總計(jì)

總計(jì)

(2)能否在犯錯的概率不超過0.10的前提下認(rèn)為性別與會俄語有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變量X與Y相對應(yīng)的一組數(shù)據(jù)為10,1,113,2118,3125,4,13,5,變量U與V相對應(yīng)的一組數(shù)據(jù)為 10,5113,4118,3,125,2,13,1).r1表示變量Y與X之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則

Ar2<r1<0 B0<r2<r1

Cr2<0<r1 Dr2=r1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠用某原料由車間加工出 產(chǎn)品,由乙車間加工出 產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時10小時可加工出7千克 產(chǎn)品,每千克 產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時6小時可加工出4千克 產(chǎn)品,每千克 產(chǎn)品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙車間耗費(fèi)工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )

A. 甲車間加工原料10箱,乙車間加工原料60

B. 甲車間加工原料15箱,乙車間加工原料55

C. 甲車間加工原料18箱,乙車間加工原料50

D. 甲車間加工原料40箱,乙車間加工原料30

查看答案和解析>>

同步練習(xí)冊答案