若方程
x2
4-k
+
y2
6+k
=1表示橢圓,則k的取值范圍是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,方程
x2
4-k
+
y2
6+k
=1表示橢圓,則 x2,y2項(xiàng)的系數(shù)均為正數(shù)且不相等列出不等關(guān)系,解可得答案.
解答: 解:∵方程
x2
4-k
+
y2
6+k
=1表示橢圓,
4-k>0
6+k>0
4-k≠6+k
,解得-6<k<4且k≠-1,
故答案為:{k|-6<k<4且k≠-1}.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,注意其標(biāo)準(zhǔn)方程的形式與圓、雙曲線的標(biāo)準(zhǔn)方程的異同,考查運(yùn)算能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(0.027) -
1
3
-(-
1
7
-2+(2
7
9
 
1
2
-(
2
-1
0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2mx與g(x)=
mx+3
x+1
在區(qū)間[1,2]上都是減函數(shù),則m的取值范圍是(  )
A、[2,3)
B、[2,3]
C、[2,+∞)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C方程為(x-3)2+y2=12,定點(diǎn)A(-3,0),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線CP相交于點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡E的方程.
(Ⅱ)過點(diǎn)C傾斜角為30°的直線交曲線E于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是(  )
A、必然事件的概率等于1,不可能事件的概率等于0
B、概率是頻率的穩(wěn)定值,頻率是概率的近似值
C、某事件的概率等于1.1
D、對立事件一定是互斥事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合G={f(x)|[f(a)]2-[f(b)]2=f(a-b)•f(a+b),a,b∈R},以以下命題:
①若f(x)=
1,x≥0
-1,x<0
,則f(x)∈G;
②若f(x)=2x,則f(x)∈G
③若f(x)=cosx,則f(x)∈G;
④若f(x)∈G,則y=f(x)的圖象關(guān)于原點(diǎn)對稱.
其中真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c.求證:b2-c2=a(bcosC-ccosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d=3,當(dāng)an=298時(shí),序號n=( 。
A、96B、99
C、100D、101

查看答案和解析>>

同步練習(xí)冊答案