分析 (Ⅰ)連接CF,證明AC⊥CD,利用射影定理求AF的長(zhǎng);
(Ⅱ)證明CF⊥MN,利用MC=MF,即可證明:MN平分∠CMF.
解答 (Ⅰ)解:連接CF,
∵AC是圓O的直徑,
∴CF⊥AF,
∵BD是圓O在點(diǎn)C處的切線,
∴AC⊥CD.
Rt△ACD中,AD=$\sqrt{16+64}$=4$\sqrt{5}$,
根據(jù)射影定理,AC2=AF•AD,
∴AF$\frac{4}{5}\sqrt{5}$;
(Ⅱ)證明:∵AC=4,BC=2,CD=8,∠ACB=∠ACD=90°,
∴△ACB∽△DCA,
∴∠BAC+∠CAD=90°,
∴EF是圓的直徑,即M是圓心.
∵N是CD中點(diǎn),
∴MN∥AD,
∴CF⊥MN.
∵M(jìn)C=MF,
∴MN平分∠CMF.
點(diǎn)評(píng) 本題考查圓的切線的證明,考查射影定理的運(yùn)用,考查三角形相似的判定與性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AC•AD=AB•CD | B. | AC•BC=AB•AD | C. | CD2=AD•DB | D. | AC2=AD•AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com