函數(shù)y=2x-x2的圖象大致是(  )
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)圖象的交點的個數(shù)就是方程的解的個數(shù),也就是y=0,圖象與x軸的交點的個數(shù),排除BC,再取特殊值,排除D
解答: 解:分別畫出函數(shù)f(x)=2x(紅色曲線)和g(x)=x2(藍色曲線)的圖象,如圖所示,
由圖可知,f(x)與g(x)有3個交點,
所以y=2x-x2=0,有3個解,
即函數(shù)y=2x-x2的圖象與x軸由三個交點,故排除B,C,
當x=-3時,y=2-3-(-3)2<0,故排除D
故選:A
點評:本題主要考查了函數(shù)圖象的問題,關鍵是理解函數(shù)圖象的交點和方程的解得個數(shù)的關系,排除是解決選擇題的常用方法,屬于中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知⊙O的兩條弦AB與CD相互垂直,且交點為P,若
OA
+
OB
+
OC
+
OD
=m
OP
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若把函數(shù)f(x)的圖象向右平移
π
12
個單位后得到函數(shù)y=sin(x+
π
3
)的圖象,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)a,b滿足a+2b=1,則
b+a
ab
的最小值為( 。
A、3+2
2
B、1+
2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx,g(x)=cos2x,以下判斷正確的序號是
 

(1)函數(shù)h(x)=f(x)-tanx在x∈(-
π
2
,0]上的零點只有1個.
(2)函數(shù)h(x)=f(x+1)-
π
2x+2
在x∈(1,2π)上的零點只有1個.
(3)函數(shù)h(x)=
1
2
f(x)+g(x)+a在x∈[0,π]的零點個數(shù)為1個時,a無解
(4)函數(shù)h(x)=
1
2
f(x)+g(x)+a在x∈[0,π]的零點個數(shù)為2時,a∈(-1,-
1
2
)∪{-
17
16
}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義[x]表示不超過x的最大整數(shù),若f(x)=cos(x-[x]),則下列結論中:
①y=f(x)為偶函數(shù);
②y=f(x)為周期函數(shù),周期為2π;
③y=f(x)的最小值為cos1,無最大值;
④y=f(x)無最小值,最大值為1.
正確的命題的個數(shù)為( 。
A、0個B、1個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,E、F分別是AB、BC上的中點,G屬于CD、H屬于AD,EH與FG相交于點P,求證:交點P必在直線BD上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線y=x3-2x-2在P處的切線平行于直線x-y+3=0,則點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,曲線y=x2-4x+3與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x+y+m=0交于A,B兩點,且
OA
OB
,求m的值.

查看答案和解析>>

同步練習冊答案