設(shè)定義在(-1,1)內(nèi)的減函數(shù),并且f(1-a2)-f(1-a)>0,求實(shí)數(shù)a的取值范圍.
分析:由定義在(-1,1)內(nèi)的減函數(shù),并且f(1-a2)-f(1-a)>0,根據(jù)函數(shù)的定義域和單調(diào)性,我們可構(gòu)造一個(gè)關(guān)于a的不等式組,解得實(shí)數(shù)a的取值范圍
解答:解:∵函數(shù)是定義在(-1,1)內(nèi)的減函數(shù),
且f(1-a2)-f(1-a)>0,f(1-a2)>f(1-a),
-1<1-a2<1
-1<1-a <1
1-a2<1-a

解得a∈(1,
2

故實(shí)數(shù)a的取值范圍為(1,
2
點(diǎn)評:本題是函數(shù)單調(diào)性的應(yīng)用,但在解答中易忽略函數(shù)定義域的限制,而錯(cuò)解為(-∞,0)∪(1,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在(-1,1)上的奇函數(shù)f (x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f (0)=0,則不等式f (x-1)+f (1-x2)<0的
解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省石家莊市正定中學(xué)高考百日摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)定義在R上的函數(shù)f (x)=ax4+a1x3+a2x2+a3x (ai∈R,i=0,1,2,3 ),當(dāng)x=-時(shí),f (x)取得極大值,并且函數(shù)y=f(x)的圖象關(guān)于y軸對稱.
(1)求f (x)的表達(dá)式;
(2)試在函數(shù)f (x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-1,1]上;
(3)求證:|f (sin x)-f (cos x)|≤(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省麗水市高中學(xué)科發(fā)展聯(lián)合體高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

設(shè)定義在R上的函數(shù)f (x)=ax4+a1x3+a2x2+a3x (ai∈R,i=0,1,2,3 ),當(dāng)x=-時(shí),f (x)取得極大值,并且函數(shù)y=f(x)的圖象關(guān)于y軸對稱.
(1)求f (x)的表達(dá)式;
(2)試在函數(shù)f (x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-1,1]上;
(3)求證:|f (sin x)-f (cos x)|≤(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在(-1,1)上的奇函數(shù)f (x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f (0)=0,則不等式f (x-1)+f (1-x2)<0的
解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市泰興三中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)定義在(-1,1)上的奇函數(shù)f (x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f (0)=0,則不等式f (x-1)+f (1-x2)<0的
解集為   

查看答案和解析>>

同步練習(xí)冊答案