【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)求x+y能被3整除的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.

【答案】
(1)解:由于x,y取值為1,2,3,4,5,6,則以(x,y)為坐標(biāo)的點(diǎn)有:

(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),

(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),

(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),

(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),

(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),

(6,6),共有36個(gè),即以(x,y)為坐標(biāo)的點(diǎn)共有36個(gè)

x+y能被3整除的點(diǎn)是:

(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),

(4,5),(5,1),(5,4),(6,3),(6,6)共12個(gè),

所以x+y能被3整除的概率是p=


(2)解:滿足x+y≥10的點(diǎn)有:

(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6個(gè),

所以小王贏的概率是p= = ,

滿足x+y≤4的點(diǎn)有:

(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6個(gè),

所以小李贏的概率是p=

則小王贏的概率等于小李贏的概率,所以這個(gè)游戲規(guī)則公平


【解析】(1)由于x,y取值為1,2,3,4,5,6,列舉出(x,y)為坐標(biāo)的點(diǎn)和x+y能被3整除的點(diǎn),由此能求出x+y能被3整除的概率.(2)列舉出滿足x+y≥10的點(diǎn)和滿足x+y≤4的點(diǎn),從而求出小王贏的概率等于小李贏的概率,所以這個(gè)游戲規(guī)則公平.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(﹣5,a)作圓x2+y2﹣2ax+2y﹣1=0的兩條切線,切點(diǎn)分別為M(x1 , y1),N(x2 , y2),且 + =0,則實(shí)數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6道題,其中3道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求: (Ⅰ)所取的2道題都是甲類題的概率;
(Ⅱ)所取的2道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點(diǎn),OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時(shí),求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足對(duì)于任意實(shí)數(shù)a,b,c,都有f(a),f(b),f(c)為某三角形的三邊長(zhǎng),則成f(x)為“可構(gòu)造三角形函數(shù)”,已知f(x)= 是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A為橢圓 =1(a>b>0)上的一個(gè)動(dòng)點(diǎn),弦AB,AC分別過左右焦點(diǎn)F1 , F2 , 且當(dāng)線段AF1的中點(diǎn)在y軸上時(shí),cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ12是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)(1,2)總可以作兩條直線與圓 x2+y2+kx+2y+k2﹣15=0 相切,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案