考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=f(x)的圖象與y=2
x的圖象關(guān)于y軸對稱,可得f(x)=2
-x.由于y=f
-1(x)是y=f(x)的反函數(shù),可得f
-1(x)=
logx.y=f
-1(x
2-2x)=
log(x2-2x)=
log[(x-1)2-1],再利用對數(shù)函數(shù)的定義域與單調(diào)性、二次函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性即可得出.
解答:
解:∵函數(shù)y=f(x)的圖象與y=2
x的圖象關(guān)于y軸對稱,
∴f(x)=2
-x.
∵y=f
-1(x)是y=f(x)的反函數(shù),
∴f
-1(x)=
logx.
y=f
-1(x
2-2x)=
log(x2-2x)=
log[(x-1)2-1],
∵x
2-2x>0,解得x<0,或x>2.
當(dāng)x∈(-∞,0)時,函數(shù)u(x)=(x-1)
2-1單調(diào)遞減,因此y=f
-1(x
2-2x)單調(diào)遞增.
∴y=f
-1(x
2-2x)的單調(diào)遞增區(qū)間是(-∞,0).
故答案為:(-∞,0).
點評:本題考查了反函數(shù)的求法、對數(shù)函數(shù)的定義域與單調(diào)性、二次函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于難題.