在數(shù)列{an}中,a1=1,an+1
an
=8

(Ⅰ)求a2,a3;
(Ⅱ)設(shè)bn=log2an,求證:{bn-2}為等比數(shù)列;
(Ⅲ)求{an}的前n項(xiàng)積Tn
(Ⅰ)∵a2
a1
=8,a1=1
,
∴a2=8.
a3
a2
=8,a1=8
,
a3=2
2

(Ⅱ)證明:∵
bn+1-2
bn-2
=
log2an+1-2
log2an-2

=
log2
8
an
-2
log2an-2
=
3-
1
2
log2an-2
log2an-2

1
2
×
2-log2an
log2an-2
=-
1
2

∴{bn-2}為等比數(shù)列,首項(xiàng)為b1-2,即為-2,其公比為-
1
2

(Ⅲ)設(shè)數(shù)列{bn-2}的前n項(xiàng)和為Sn
Sn=
-2(1-(-
1
2
)
n
)
1+
1
2
=b1+b2+b3+…+bn-2n=log2a1+log2a2+…log2an-2n
=log2Tn-2n

log2Tn=
4
3
[(-
1
2
)n-1]+2n
,
Tn=2
4
3
[(-
1
2
)
n
-1]+2n
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an+2n+1,n∈N*
(1)求證:{an-2}是等比數(shù)列;
(2)求數(shù)列{nan}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足Sn=n2an(n∈N*),其中Sn是{an}的前n項(xiàng)和,且a1=1,求
(1)求an的表達(dá)式;
(2)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)滿足f(x+1)=3f(x)+2,若a1=1,an=f(n).
(1)設(shè)Cn=an+1,證明:{Cn}是等比數(shù)列;
(2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知無(wú)窮數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=A
a2n
+Ban+C
,其中A、B、C是常數(shù).
(1)若A=0,B=3,C=-2,求數(shù)列{an}的通項(xiàng)公式;
(2)若A=1,B=
1
2
,C=
1
16
,且an>0,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)試探究A、B、C滿足什么條件時(shí),數(shù)列{an}是公比不為-1的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列1,2,2,3,3,3,4,4,4,4, 中,第25項(xiàng)為       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列的一個(gè)通項(xiàng)公式為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

記數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an-1),則a2=( 。
A.4B.2C.1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案