精英家教網 > 高中數學 > 題目詳情
設m>1,P=
m
-
m-1
,Q=
m+1
-
m
,那么( 。
A、P>QB、P≥Q
C、P<QD、P≤Q
分析:把 P和 Q 的分子分別進行有理化變形,是分子全部等于1,只比較分母的大小即可.
解答:解:P=
m
-
m-1
=
1
m
+
m-1
,Q=
m+1
-
m
=
1
m+1
+
m
,
m+1
+
m
m
+
m-1
>0,故 P>Q,
故選 A.
點評:本題考查不等式比較大小的方法,體現(xiàn)了轉化的數學思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設c>1,記m=
c+1
-
c
,n=
c
-
c-1
,p=
1
2
(
c+1
-
c-1
)
,則m、n、p的大小關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數g(x)=logax,其中a>1.
(Ⅰ)當x∈[0,1]時,g(ax+2)>1恒成立,求a的取值范圍;
(Ⅱ)設m(x)是定義在[s,t]上的函數,在(s,t)內任取n-1個數x1,x2,…,xn-2,xn-1,設x1<x2<…<xn-2<xn-1,令s=x0,t=xn,如果存在一個常數M>0,使得
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,則稱函數m(x)在區(qū)間[s,t]上的具有性質P.
試判斷函數f(x)=|g(x)|在區(qū)間[
1
a
,a2]
上是否具有性質P?若具有性質P,請求出M的最小值;若不具有性質P,請說明理由.
(注:
n
i=1
|m(xi)-m(xi-1)|=|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1,設M是底面ABC內的點,定義f(M)=(m,n,p),其中m,n,p分別是三棱錐M-PAB,三棱錐M-BPC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),則
1
x
+
1
y
最小值為
8
8

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省重點中學高二(上)期中數學試卷(理科)(解析版) 題型:填空題

如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1,設M是底面ABC內的點,定義f(M)=(m,n,p),其中m,n,p分別是三棱錐M-PAB,三棱錐M-BPC、三棱錐M-PCA的體積.若f(M)=(,x,y),則最小值為   

查看答案和解析>>

同步練習冊答案