解:(1)如圖1,設(shè)M(x,y),A(x0,y0)
∵丨DM丨=m丨DA丨,
∴x=x0,|y|=m|y0|
∴x0=x,|y0|=|y|①
∵點(diǎn)A在圓上運(yùn)動(dòng),
∴②
①代入②即得所求曲線C的方程為
∵m∈(0,1)∪(1,+∞),
∴0<m<1時(shí),曲線C是焦點(diǎn)在x軸上的橢圓,
兩焦點(diǎn)坐標(biāo)分別為(),
m>1時(shí),曲線C是焦點(diǎn)在y軸上的橢圓,
兩焦點(diǎn)坐標(biāo)分別為(),
(2)如圖2、3,∵x1∈(0,1),
設(shè)P(x1,y1),H(x2,y2),
則Q(x2,y2),N(0,y1),
∵P,H兩點(diǎn)在橢圓C上,
∴
①-②可得③
∵Q,N,H三點(diǎn)共線,
∴kQN=kQH,
∴
∴kPQ·kPH=
∵PQ⊥PH,
∴kPQ·kPH=-1
∴
∵m>0,
∴
故存在,使得在其對(duì)應(yīng)的橢圓上,對(duì)任意k>0,都有PQ⊥PH。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)A是單位圓x2+y2=1上任意一點(diǎn),l是過點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C。
(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求其焦點(diǎn)坐標(biāo)。
(2)過原點(diǎn)斜率為K的直線交曲線C于P,Q兩點(diǎn),其中P在第一象限,且它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的K>0,都有PQ⊥PH?若存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省佛山市順德區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com