某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查。
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校,求抽取的2所學(xué)校均為小學(xué)的概率.
(1)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目為3、2、1;
(2)抽取的2所學(xué)校均為小學(xué)的概率為.

試題分析:(1)由分層抽樣易求從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目為3、2、1;
(2)先列舉出從抽取的6所學(xué)校中隨機抽取2所學(xué)校的所有可能,找出抽取的2所學(xué)校均為小學(xué)可能,即可求出抽取的2所學(xué)校均為小學(xué)的概率.
試題解析:(1)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目之比為,得:從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目為.
(2)設(shè)抽取的6所學(xué)校中小學(xué)為,中學(xué)位,大學(xué)為;抽取2所學(xué)校的結(jié)果為: 共15種;抽取的2所學(xué)校均為小學(xué)的結(jié)果為共3種,抽取的2所學(xué)校均為小學(xué)的概率為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機取1個,直到取出3次紅球即停止.
(1)從袋中不放回地取球,求恰好取4次停止的概率P1;
(2)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(1)求從甲、乙、丙三個車床中抽取的零件的件數(shù);
(2)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從某地區(qū)的兒童中挑選體操學(xué)員,已知兒童體型合格的概率為,身體關(guān)節(jié)構(gòu)造合格的概率為,從中任挑一兒童,這兩項至少有一項合格的概率是________(假定體型與身體關(guān)節(jié)構(gòu)造合格與否相互之間沒有影響).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷下列命題正確與否.
(1)先后擲兩枚質(zhì)地均勻的硬幣,等可能出現(xiàn)“兩個正面”“兩個反面”“一正一反”三種結(jié)果;
(2)某袋中裝有大小均勻的三個紅球、兩個黑球、一個白球,任取一球,那么每種顏色的球被摸到的可能性相同;
(3)從-4,-3,-2,-1,0,1,2中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同;
(4)分別從3名男同學(xué)、4名女同學(xué)中各選一名代表,男、女同學(xué)當選的可能性相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下圖是某公司10個銷售店某月銷售某產(chǎn)品數(shù)量(單位:臺)的莖葉圖,則數(shù)據(jù)落在區(qū)間[22,30)內(nèi)的概率為________.
1
8
9
 
 
 
2
1
2
2
7
9
3
0
0
3
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲從正方形四個頂點中任意選擇兩個頂點連成直線,乙從該正方形四個頂點中任意選擇兩個頂點連成直線,則所得的兩條直線相互垂直的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從{1,2,3,4,5}中隨機選取一個數(shù)為a,從{1,2,3}中隨機選取一個數(shù)為b,則b>a的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案