設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,并且滿足an2,Sn,n成等差數(shù)列,an>0(n∈N*).
(1)寫出an與an-1(n≥2)的關(guān)系并求a1,a2,a3;
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(3)設(shè)x>0,y>0,且x+y=2,求(anx+2)2+(any+2)2的最小值(用n表示).
分析:(1)由題意可得由2Sn=
a
2
n
+n
①當(dāng)n≥2時(shí),2Sn-1=
a
2
n-1
+(n-1)
②,兩式相減得數(shù)列的遞推關(guān)系式,分別令n=1,2,3,即可求出a1,a2,a3值.
(2)猜想an=n,檢驗(yàn)n=2時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
(3)由于x>0,y>0,且x+y=2,an=n,利用基本不等式即可求出(anx+2)2+(any+2)2的最小值.
解答:解:(1)由2Sn=
a
2
n
+n

可知,當(dāng)n≥2時(shí),2Sn-1=
a
2
n-1
+(n-1)

①-②,得2an=
a
2
n
-
a
2
n-1
+1
,即
a
2
n
=2an+
a
2
n-1
-1
.(2分)
∵an>0分別令n=1,2,3,得a1=1,a2=2,a3=3.(4分)
(2)猜想:an=n,
1)當(dāng)n=2時(shí),結(jié)論顯然成立.
2)假設(shè)當(dāng)n=k(k≥2)時(shí),ak=k.
那么當(dāng)n=k+1時(shí),
a
2
k+1
=2ak+1+
a
2
k
-1=2ak+1
+k2-1⇒[ak+1-(k+1)][ak+1+(k-1)]=0,
∵ak+1>0,k≥2,
∴ak+1+(k-1)>0,
∴ak+1=k+1.
這就是說,當(dāng)n=k+1時(shí)也成立,∴an=n(n≥2).顯然n=1時(shí),也適合.
故對(duì)于n∈N*,均有an=n(9分)
(3)∵x>0,y>0,且x+y=2,an=n,
(anx+2)2+(any+2)2=(nx+2)2+(ny+2)2
(nx+2+ny+2)2
2
=2(n+2)2
,
(anx+2)2+(any+2)2的最小值為2(n+2)2.(13分)
點(diǎn)評(píng):本小題主要考查數(shù)學(xué)歸納法的應(yīng)用、基本不等式的應(yīng)用、數(shù)列等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案