△ABC中,過點A作AH⊥BC,垂足為H,BH=3,HC=2,則(
AB
3
+
AC
2
)•
BC
=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義、投影的定義即可得出.
解答: 解:如圖所示,
∵AH⊥BC,垂足為H,BH=3,HC=2,
∴(
AB
3
+
AC
2
)•
BC
=-
1
3
BA
BC
+
1
2
CA
CB

=-
1
3
|
BA
| |
BC
|cosB
+
1
2
|
CA
| |
CB
|cosC

=-
1
3
•|
BH
| |
BC
|
+
1
2
|
CH
| |
CB
|

=-
1
3
×3×|
BC
|+
1
2
×2×|
CB
|

=0.
故答案為:0.
點評:本題考查了數(shù)量積的定義、投影的定義,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,某林場為了及時發(fā)現(xiàn)火情,在林場中設(shè)立了兩個觀測點A和B,某日兩個觀測點的林場人員分別觀測到C處有險情.在A處觀測到火情發(fā)生在北偏西45°方向,在B點觀測火場C在北偏西75°方向,已知B在A的正東方向10km處,那么火場C到觀測點A的距離為
 
km.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,令y=f(x),若f(a)>1,則a是取值范圍是
 
. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足x2+y2-6x-8y+23<0(x>3),則z=x-y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SA,SB,SC兩兩垂直,且SA=a,SB=b,SC=c,現(xiàn)有下列命題:
①△ABC一定為銳角三角形;
②該三棱錐的每組對棱分別互相垂直;
③該三棱錐的外接球的半徑為
a2+b2+c2
;
④頂點S在平面ABC內(nèi)的射影一定為△ABC的重心.
其中真命題有
 
(填上你認為的真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2=-5,a7=a5+4,則a2012=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
πx(x≥0)
ex(x<0)
,若任意x∈[1-2a,2a-1]滿足不等式f(a(x+1)-x)≥[f(x)]a恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2<|x-1|+a的解集是區(qū)間(-3,3)的子集,則實數(shù)a的取值范圍是(  )
A、(-∞,5]
B、(-∞,5)
C、(-∞,7]
D、(-∞,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(x+y)n的展開式中,若第8項系數(shù)最大,則n的值可能等于(  )
A、14,15
B、15,16
C、16,17
D、13,14,15

查看答案和解析>>

同步練習冊答案