已知矩形ABCD,AB=1,BC=,將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中,下列說法正確的是________.(填序號)
①存在某個位置,使得直線AC與直線BD垂直;
②存在某個位置,使得直線AB與直線CD垂直;
③存在某個位置,使得直線AD與直線BC垂直;
④對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直.
②
【解析】找出圖形在翻折過程中變化的量與不變的量.
對于①,過點A作AE⊥BD,垂足為E,過點C作CF⊥BD,垂足為F,在圖(1)中,由邊AB、BC不相等可知點E、F不重合.在圖(2)中,連結CE,若直線AC與直線BD垂直,∵AC∩AE=A,∴BD⊥平面ACE,∴BD⊥CE,與點E、F不重合相矛盾,故①錯誤.
對于②,若AB⊥CD,∵AB⊥AD,AD∩CD=D,∴AB⊥平面ADC,∴AB⊥AC,由AB<BC可知存在這樣的等腰直角三角形,使得直線AB與直線CD垂直,故②正確.
對于③,若AD⊥BC,∵DC⊥BC,AD∩DC=D,∴BC⊥平面ADC,∴BC⊥AC.已知BC=,AB=1,BC>AB,∴不存在這樣的直角三角形.∴③錯誤.
由上可知④錯誤,故正確的說法只有②.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第六章第1課時練習卷(解析版) 題型:填空題
不等式ax2+bx+2>0的解集是,則a-b=________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第5課時練習卷(解析版) 題型:填空題
已知正方形ABCD的邊長為2,E、F分別為BC、DC的中點,沿AE、EF、AF折成一個四面體,使B、C、D三點重合,則這個四面體的體積為________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求證:平面B1AC∥平面DC1A1.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
在空間四邊形ABCD中,已知AC⊥BD,AD⊥BC,求證:AB⊥CD.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
在正三棱柱ABCA1B1C1中,點D是BC的中點,BC=BB1.
(1)若P是CC1上任一點,求證:AP不可能與平面BCC1B1垂直;
(2)試在棱CC1上找一點M,使MB⊥AB1.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:填空題
下列命題:①一條直線在平面內的射影是一條直線;②在平面內射影是直線的圖形一定是直線;③在同一平面內的射影長相等,則斜線長相等;④兩斜線與平面所成的角相等,則這兩斜線互相平行.其中真命題的個數是________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題
已知P是正方體ABCDA1B1C1D1棱DD1上任意一點,則在正方體的12條棱中,與平面ABP平行的直線是____________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:填空題
某科研單位欲拿出一定的經費獎勵科研人員,第1名得全部資金的一半多一萬元,第2名得剩下的一半多一萬元,以名次類推都得到剩下的一半多一萬元,到第10名恰好資金分完,則此科研單位共拿出________萬元資金進行獎勵.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com