【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)求l和C的直角坐標方程.
(2)設(shè)點,直線l交曲線C于A,B兩點,求的值.
【答案】(1)的直角坐標方程為;曲線的直角坐標方程為;(2)
【解析】
(1)將直線的參數(shù)方程消去可得的直角坐標方程,由,得,結(jié)合極坐標方程與直角坐標方程間的關(guān)系,轉(zhuǎn)化即可.
(2)將直線的參數(shù)方程,代入C的直角坐標方程中,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,及,可求出答案.
(1)直線的參數(shù)方程為(其中為參數(shù)),
消去可得的直角坐標方程為;
由,得,
則曲線的直角坐標方程為.
(2)將直線的參數(shù)方程,代入,
得,設(shè)A,B對應(yīng)的參數(shù)分別為,,
則,,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).
(1)求拋物線C的方程;
(2)①求證:四邊形是平行四邊形.
②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).且
(1)若,求實數(shù)的值,并求此時在上的最小值;
(2)若函數(shù)不存在零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)求l和C的直角坐標方程.
(2)設(shè)點,直線l交曲線C于A,B兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數(shù)f(x)=f1(x)·f2(x)的極值;
(2)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內(nèi)有兩個零點,求正實數(shù)a的取值范圍;
(3)求證:當x>0時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為(),直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)己知點,直線與曲線交于,兩點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線C1的極坐標方程是,在以極點為原點O,極軸為x軸正半軸(兩坐標系取相同的單位長度)的直角坐標系xOy中,曲線C2的參數(shù)方程為(θ為參數(shù)).
(1)求曲線C1的直角坐標方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級別按直徑的大小分為四個等級,其中直徑在區(qū)間為特級品,在的為一級品,在的為二級品,在的為三級品,某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機抽取了個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數(shù)分布表如下:
頻數(shù) | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取個,其中一級品有個.
(1)求、的值,并估計這些龍眼干中特級品的比例;
(2)已知樣本中的個龍眼干約克,該農(nóng)場有千克龍眼干待出售,商家提出兩種收購方案:
方案A:以元/千克收購;
方案B:以級別分裝收購,每袋個,特級品元/袋、一級品元/袋、二級品元/袋、三級品元/袋.用樣本的頻率分布估計總體分布,哪個方案農(nóng)場的收益更高?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com