是⊙上的任意一點,過垂直軸于,動點滿足
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使的中點,若存在,求出直線的方程,若不存在,請說明理由。
(1)設(shè),依題意,則點的坐標為  ………1分
                    ………………………2分
    
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓共焦點,且以為漸近線,求雙曲線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知定點,動點滿足,
(1)求動點的軌跡方程,并說明方程表示什么曲線;
(2)當時,求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
在平面直角坐標系中,設(shè)點(1,0),直線:,點在直線上移動,是線段軸的交點, .
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)記的軌跡的方程為,過點作兩條互相垂直的曲線的弦、,設(shè)、 的中點分別為.求證:直線必過定點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標系中,已知,),,O為坐標原點,若實數(shù)使向量,滿足:,設(shè)點P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當時,過點且斜率為1的直線與相交的另一個交點為,能否在直線上找到一點,恰使為正三角形?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知兩定點,若點P滿足。
(1)求點P的軌跡及其方程。
(2)直線與點P的軌跡交于A、B兩點,若,且曲線E上存在點C,使,求實數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知⊙O:,直線交⊙O于A、B兩點,分別過A、B作⊙O的切線,交于M點。
(Ⅰ) 當時,求弦長AB;
(Ⅱ) 若直線過點(1,1),求點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是過圓錐曲線中心的任一條弦,是二次曲線上異于的任一點,且均與坐標軸不平行,則對于橢圓,有,類似的,對于雙曲線,有        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從圓:上任意一點軸作垂線,垂足為,點是線 的中點,則點的軌跡方程是(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案