A. | 2 | B. | 2$\sqrt{3}$ | C. | 2+2$\sqrt{3}$ | D. | 2$\sqrt{3}$-2 |
分析 利用二倍角公式求出m,再利用基本不等式,即可求出函數(shù)y=2m•x+$\frac{3}{x-1}$+1(x>1)的最小值.
解答 解:∵x>1,∴x-1>0.
m=$\frac{tan22.5°}{1-ta{n}^{2}22.5°}$=$\frac{1}{2}$tan45°=$\frac{1}{2}$,
y=2m•x+$\frac{3}{x-1}$+1=x+$\frac{3}{x-1}$+1=(x-1)+$\frac{3}{x-1}$+2≥2$\sqrt{3}$+2,
故選:C.
點評 本題考查函數(shù)y=2m•x+$\frac{3}{x-1}$+1(x>1)的最小值,考查二倍角公式,正確運用基本不等式是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,3,4} | B. | {1,3} | C. | {1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2盞 | B. | 3盞 | C. | 4盞 | D. | 5盞 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com