科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
k |
2 |
17 |
8 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數(shù)學試卷(解析版) 題型:解答題
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當時,則
即,其中是大于等于的整數(shù)
反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
結合二項式定理得到結論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當時,則即,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
由,得
當為奇數(shù)時,此時,一定有和使上式一定成立。當為奇數(shù)時,命題都成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com