若函數(shù)f(x)=mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍是________.
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x)=(m-2)x2+mx+(2m+1)的兩個零點分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則m的取值范圍是 ( )
A.(-,) B.(-,)
C.(,) D.[,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:填空題
在平面直角坐標(biāo)系xOy中,設(shè)直線y=x+2m和圓x2+y2=n2相切,其中m,n∈N*,0<| m-n |≤1,若函數(shù)f (x)=mx+1-n的零點x0∈(k,k+1),k∈Z,則k=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:填空題
在平面直角坐標(biāo)系xOy中,設(shè)直線y=x+2m和圓x2+y2=n2相切,其中m,n∈N*,0<| m-n |≤1,若函數(shù)f (x)=mx+1-n的零點x0∈(k,k+1),k∈Z,則k=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知函數(shù)f(x)=mx-,g(x)=2lnx.
(Ⅰ)當(dāng)m=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當(dāng)m=1時,證明方程f(x)=g(x)有且僅有一個實數(shù)根;
(Ⅲ)若xÎ(1,e]時,不等式f(x)-g(x)<2恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,設(shè)直線y=x+2m和圓x2+y2=n2相切,其中m,n∈N*,0<| m-n |≤1,若函數(shù)f (x)=mx+1-n的零點x0∈(k,k+1),k∈Z,則k=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com