已知函f(x)=
3x+1  ,x≤0
log2x,x>0
,f(x0)>3,x0的取值范圍是______.
當(dāng)x≤0時(shí),3x0+1>3,可得此時(shí)不等式無解,
當(dāng) x>0時(shí),log2x0>3,解得 x0>8,
分析可得,
f(x0)>3,則x0的取值范圍是:(8,+∞)
故答案為:(8,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、如圖是已知函數(shù)f(x)=x2-3x+5,求當(dāng)x∈{0,3,6,…60}時(shí)的函數(shù)值的一個(gè)程序框圖,則①處應(yīng)填( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x,當(dāng)x在區(qū)間[-1,3]上任意取值時(shí),函數(shù)值不小于0又不大于2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=
3x+1  ,x≤0
log2x,x>0
,f(x0)>3,x0的取值范圍是
(8,+∞)
(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,t](t>-2)
(1)當(dāng)t<l時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)比較f(-2)與f (t)的大小,并加以證明;
(3)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間,設(shè)g(x)=f(x)+(x-2)ex,試問函數(shù)g(x)在(1,+∞)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案