【題目】函數(shù)f(x)=ax+4的圖象恒過(guò)定點(diǎn)P,則P點(diǎn)坐標(biāo)是 .
【答案】(0,5)
【解析】解:∵y=ax的圖象恒過(guò)定點(diǎn)(0,1),
而f(x)=ax+4的圖象是把y=ax的圖象向上平移4個(gè)單位得到的,
∴函數(shù)f(x)=ax+4的圖象恒過(guò)定點(diǎn)P(0,5),
所以答案是:(0,5).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解指數(shù)函數(shù)的圖像與性質(zhì)的相關(guān)知識(shí),掌握a0=1, 即x=0時(shí),y=1,圖象都經(jīng)過(guò)(0,1)點(diǎn);ax=a,即x=1時(shí),y等于底數(shù)a;在0<a<1時(shí):x<0時(shí),ax>1,x>0時(shí),0<ax<1;在a>1時(shí):x<0時(shí),0<ax<1,x>0時(shí),ax>1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(2+x)+ln(2﹣x),則f(x)是( )
A.奇函數(shù),且在(0,2)上是增函數(shù)
B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)
D.偶函數(shù),且在(0,2)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)學(xué)歸納法證明1+2+3+…+(2n+1)=(n+1)(2n+1)時(shí),從n=k到n=k+1,左邊需增添的代數(shù)式是( )
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={0,1,2},則下列關(guān)系式正確的是( )
A.{0}∈M
B.{0}M
C.0∈M
D.0M
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an﹣2.
(1)求a1 , a2 , a3并由此猜想an的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意實(shí)數(shù)a,b,c,d,命題:
①若a>b,c≠0,則ac>bc;
②若a>b,則ac2>bc2;
③若ac2>bc2 , 則a>b.
其中真命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是不同的直線,α,β是不同的平面,下列四個(gè)命題為真命題的是( ) ①若m⊥α,n⊥m,則n∥α;
②若α∥β,n⊥α,m∥β,則n⊥m;
③若m∥α,n⊥β,m⊥n,則α⊥β;
④若m∥α,n⊥β,m∥n,則α⊥β.
A.②③
B.③④
C.②④
D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com