若命題p:?x∈R,ax2+4x+a≥-2x2+1是真命題,則實(shí)數(shù)a的取值范圍是( 。
分析:依題意:ax2+4x+a≥-2x2+1恒成立,即(a+2)x2+4x+a-1≥0恒成立,結(jié)合二次函數(shù)的性質(zhì)求解.
解答:解:依題意:ax2+4x+a≥-2x2+1恒成立,
即(a+2)x2+4x+a-1≥0①恒成立,
所以有①:當(dāng)a+2=0,即a=-2時(shí),不等式①為4x-3≥0不恒成立
a+2>0
16-4 a+2 a-1≤0

?
a>-2
a2+a-6≥0
?a≥2.
綜上所述,a≥2.
所以選B
點(diǎn)評:本題考查一元二次不等式的應(yīng)用,注意聯(lián)系對應(yīng)的二次函數(shù)的圖象特征,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、下列命題錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個(gè)命題中,其中為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法中錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下給出四個(gè)命題,其中真命題的序號為

①設(shè)f(x)=
2
x
+lnx
,則x=2為f(x)的極大值點(diǎn)
②若命題P:?x∈R,使得ex-x+1≥0,則?P:?x0∈R,使得ex-x0+1≤0
③m,n為兩條直線,α,β為兩個(gè)平面,若m∥α,n∥β且α∥β,則m∥n
④若雙曲線
x2
a2
-
y2
b2
=1
的離心率為
2
,則a=b.

查看答案和解析>>

同步練習(xí)冊答案