已知集合A={-2,-1,3,4},B={x|x>0},則A∩B=
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集的性質(zhì)求解.
解答: 解:∵集合A={-2,-1,3,4},B={x|x>0},
∴A∩B={3,4}.
故答案為:{3,4}.
點(diǎn)評(píng):本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要注意交集性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
1
x-1
+5(x>1)的最小值為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)0.73.1,0.76,60.7的大小關(guān)系為( 。
A、0.73.1<0.76<60.7
B、0.76<0.73.1<60.7
C、0.76<60.7<0.73.1
D、60.7<0.76<0.73.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{1,2}⊆A⊆{1,2,3,4,5 },則集合A的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(1+i)z=i-2,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐A-BCD中,若AB⊥CD,AD⊥BC,則異面直線AC和BD所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥面ABCD,△ABC是正三角形,AC△與BD的交點(diǎn)M恰好是AC的中點(diǎn),又是PA=AB=2,∠CDA=120°.
(Ⅰ)求證:BD⊥PC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(2
4
5
0+2-2×(2
1
4
- 
1
2
-(0.01) 
1
2
;
(2)2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)P(1,
3
2
),F(xiàn)1、F2分別為其左、焦點(diǎn),直線l為其右準(zhǔn)線.
(1)若2≤a≤
22
2
,求離心率e的取值范圍;
(2)橢圓C的離心率e=
1
2
,點(diǎn)M是直線l上一動(dòng)點(diǎn).
①若直線F1M交橢圓于S點(diǎn),且F1S=SM,求∠F1SF2的余弦值;
②直線L上是否存在一點(diǎn)N,使得F1M⊥F2N,且MN=2
14
?若存在,請(qǐng)求出N點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案