在數(shù)列{}中,,并且對任意都有成立,令.
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)設數(shù)列{}的前n項和為,證明:
(Ⅰ)
(Ⅱ)見解析
解析試題分析:(I)、當n=1時,先求出b1=3,當n≥2時,求得b n+1與bn的關系即可知道bn為等差數(shù)列,然后便可求出數(shù)列{bn}的通項公式;
(II)根據(jù)(I)中求得的bn的通項公式先求出數(shù)列{}的表達式,然后求出Tn的表達式,根據(jù)不等式的性質即可證明<Tn<
解:(Ⅰ)當n=1時,,當時,
由得所以------------4分
所以數(shù)列是首項為3,公差為1的等差數(shù)列,
所以數(shù)列的通項公式為-------------5分
(Ⅱ)------------------------------------7分
-------------------11分
可知Tn是關于變量n的增函數(shù),當n趨近無窮大時,的值趨近于0,
當n=1時Tn取最小值,故有----------------14分
考點:本題主要考查了數(shù)列的遞推公式以及等差數(shù)列與不等式的結合,考查了學生的計算能力和對數(shù)列的綜合掌握,解題時注意整體思想和轉化思想的運用,屬于中檔題
點評:解決該試題的關鍵是運用整體的思想來表示出遞推關系,然后進而利用函數(shù)的單調性的思想來放縮得到證明。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列滿足,.
⑴求證:數(shù)列是等比數(shù)列,并寫出數(shù)列的通項公式;
⑵若數(shù)列滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在數(shù)列中,;
(1)設,求證數(shù)列是等比數(shù)列;
(2)設,求證:數(shù)列是等差數(shù)列;
(3)求數(shù)列的通項公式及前n項和的公式。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列和滿足:,其中為實數(shù),為正整數(shù).
(1)對任意實數(shù),證明數(shù)列不是等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結論;
(3)設,為數(shù)列的前項和.是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知等差數(shù)列的前四項和為10,且成等比數(shù)列
(1)求通項公式
(2)設,求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)在數(shù)列中,是數(shù)列前項和,,當
(I)求證:數(shù)列是等差數(shù)列;
(II)設求數(shù)列的前項和;
(III)是否存在自然數(shù),使得對任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com