(滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值,并求出不動(dòng)點(diǎn);
(3)若在上恒成立 , 求的取值范圍.
略
【解析】(1)
對(duì)任意的------------------------------------------- 1分
-------------------------------- 3分
∵
∴
∴,函數(shù)在上單調(diào)遞增。-----------------5分
(2)解:令,-------------------------------------7分
令(負(fù)值舍去)---------------------------------------9分
將代入得---------10分
(3)∵ ∴ ----------------------------------------12分
∵ ∴(等號(hào)成立當(dāng))--------------------14分
∴
的取值范圍是------------------------------------------16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分,第(1)小題6分,第(2)小題10分)
某團(tuán)體計(jì)劃于2011年年初劃撥一筆款項(xiàng)用于設(shè)立一項(xiàng)基金,這筆基金由投資公司運(yùn)作,每年可有3%的受益.
(1)該筆資金中的A(萬(wàn)元)要作為保障資金,每年年末將本金A及A的當(dāng)年受益一并作為來(lái)年的投資繼續(xù)運(yùn)作,直到2020年年末達(dá)到250(萬(wàn)元),求A的值;
(2)該筆資金中的B(萬(wàn)元)作為獎(jiǎng)勵(lì)資金,每年年末要從本金B(yǎng)及B的當(dāng)年受益中支取250(萬(wàn)元),余額來(lái)年繼續(xù)運(yùn)作,并計(jì)劃在2020年年末支取后該部分資金余額為0,求B的值.(A和B的結(jié)果以萬(wàn)元為單位,精確到萬(wàn)元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分,第(1)小題6分,第(2)小題10分)
如圖,已知點(diǎn)是邊長(zhǎng)為的正三角形的中心,線段經(jīng)過(guò)點(diǎn),并繞點(diǎn) 轉(zhuǎn)動(dòng),分別交邊、于點(diǎn)、;設(shè),,其中,.
(1)求表達(dá)式的值,并說(shuō)明理由;
(2)求面積的最大和最小值,并指出相應(yīng)的、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分16分,第(1)小題6分,第(2)小題10分)
設(shè), 定義一種向量的運(yùn)算:,點(diǎn)P(x,y)在函數(shù)的圖像上運(yùn)動(dòng),點(diǎn)Q在的圖像上運(yùn)動(dòng),且滿(mǎn)足(其中O為坐標(biāo)原點(diǎn))
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052412383315625288/SYS201205241240187812685295_ST.files/image008.png">,求a,b的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com