設(shè)f(x)=ax3+bx+c為奇函數(shù),其圖象在點(diǎn)(1,f(x))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)(x)的最小值為-12.
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,極大值和極小值,并求函數(shù)f(x)在[-1,3]上的最大值與最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:北京市四中2011-2012學(xué)年高二下學(xué)期期中測試數(shù)學(xué)理科試題 題型:022
設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]上的最大值為3,最小值為-29,且a>b,則a=________,b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:選修設(shè)計數(shù)學(xué)1-1北師大版 北師大版 題型:044
設(shè)f(x)=ax3+x恰有三個單調(diào)區(qū)間,試確定a的取值范圍,并求其單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省汕頭市金山中學(xué)2010屆高三期中考試數(shù)學(xué)理科試題 題型:044
設(shè)f(x)=ax3+bx2+4x,其導(dǎo)函數(shù)y=(x)的圖象經(jīng)過點(diǎn)(,0),(2,0),如圖所示.
(1)求函數(shù)f(x)的解析式和極值;
(2)對x∈[0,3]都有f(x)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:貴州省遵義四中2010屆高三畢業(yè)班第四次月考、文科數(shù)學(xué)試卷 題型:044
設(shè)f(x)=ax3-(a+2)x2+6x-3,x∈R,a是常數(shù),且a>0
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)在x=1時取得極大值,且直線y=-1與函數(shù)f(x)的圖象有三個交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com