5.若tan(α-$\frac{π}{4}$)=$\frac{1}{6}$.則tanα=$\frac{7}{5}$.

分析 直接根據(jù)兩角差的正切公式計算即可

解答 解:∵tan(α-$\frac{π}{4}$)=$\frac{tanα-tan\frac{π}{4}}{1+tanαtan\frac{π}{4}}$=$\frac{tanα-1}{tanα+1}$=$\frac{1}{6}$
∴6tanα-6=tanα+1,
解得tanα=$\frac{7}{5}$,
故答案為:$\frac{7}{5}$.

點評 本題考查了兩角差的正切公式,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(ωx-φ),$(ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過點$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,且相鄰兩條對稱軸的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對邊,若$f({\frac{A}{2}})+cosA=\frac{1}{2}$,求∠A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積為$\frac{8}{3}$,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)設(shè)m為整數(shù),且對于任意正整數(shù)n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°.
(1)證明:直線BC∥平面PAD;
(2)若△PCD面積為2$\sqrt{7}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈D}\\{x,x∉D}\end{array}\right.$,其中集合D={x|x=$\frac{n-1}{n}$,n∈N*},則方程f(x)-lgx=0的解的個數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB為半圓O的直徑,直線PC切半圓O于點C,AP⊥PC,P為垂足.
求證:(1)∠PAC=∠CAB;
(2)AC2 =AP•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,若sinα=$\frac{1}{3}$,則sinβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為(  )
A.90πB.63πC.42πD.36π

查看答案和解析>>

同步練習(xí)冊答案