20.函數(shù)f(x)=ln(-x2+2x+3)的定義域為( 。
A.{x|-3<x<1}B.{x|-1<x<3}.C.{x|x<-3或x>1}D.{x|x<-1或x>3}

分析 根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列出不等式-x2+2x+3>0求解集即可.

解答 解:函數(shù)f(x)=ln(-x2+2x+3),
∴-x2+2x+3>0,
即x2-2x-3<0,
解得-1<x<3,
∴函數(shù)f(x)的定義域為{x|-1<x<3}.
故選:B.

點評 本題考查了一元二次不等式的解法與應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖ABCD為矩形,CDFE為梯形,CE⊥平面ABCD,O為BD的中點,AB=2EF
(Ⅰ)求證:OE∥平面ADF;
(Ⅱ)若ABCD為正方形,求證:平面ACE⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC的頂點A(5,1),AB邊上的中線CM所在的直線方程為2x-y-5=0,AC邊上的高BH所在直線的方程為x-2y-5=0.
(1)求直線BC的方程;
(2)求直線BC關于CM的對稱直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個三棱錐的三視圖如下圖所示,則該幾何體的體積為(  )
A.1B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.程序框圖如圖所示,若輸入a的值是虛數(shù)單位i,則輸出的結(jié)果是( 。
A.-1B.i-1C.0D.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,an=$\left\{\begin{array}{l}{\frac{2}{3},n=1}\\{\frac{1}{{3}^{n}},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知$sinx=\frac{{\sqrt{5}}}{5},({0<x<\frac{π}{2}})$,
(1)求cosx,tanx;
(2)求$\frac{cosx+2sinx}{2cosx-sinx}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設z=-1+3i,則z的共軛復數(shù)為( 。
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.是否存在a,b,c使等式($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{a{n}^{2}+bn+c}{n}$對一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案