設(shè)函數(shù)的圖象如圖所示,且與軸相切于原點(diǎn),若函數(shù)的極小值為-4.

(1)求的值;
(2)求函數(shù)的遞減區(qū)間.

(1)
(2)單調(diào)遞減區(qū)間 

解析試題分析:(1)解:(1)由題意知f(0)=0,∴c=0,∴f(x)=x3+ax2+bx f'(x)=3x2+2ax+b,又∵f'(x)=b=0,∴f'(x)=3x2+2ax=0,故極小值點(diǎn)為x=-
,∴f(-)=-4∴a=-3,(2)令f'(x)<0 即:3x2-6x<0,解得:0<x<2
∴函數(shù)的遞減區(qū)間為(0,2)
考點(diǎn):導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
點(diǎn)評:本題考查了導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,要注意從圖象中得到有價(jià)值的結(jié)論,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)有兩個(gè)極值點(diǎn),且.
(1)求實(shí)數(shù)的取值范圍;
(2)討論函數(shù)的單調(diào)性;
(3)若對任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為實(shí)數(shù),
(1)若,求上最大值和最小值;
(2)若上都是遞增的,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于在區(qū)間上有意義的兩個(gè)函數(shù),如果對于任意的,都有,則稱在區(qū)間上是接近的兩個(gè)函數(shù),否則稱它們在上是非接近的兩個(gè)函數(shù),F(xiàn)有兩個(gè)函數(shù),且都有意義.
(1)求的取值范圍;
(2)討論在區(qū)間上是否是接近的兩個(gè)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),問是否存在實(shí)數(shù)使上取最大值3,最小值-29,若存在,求出的值;不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是奇函數(shù),是偶函數(shù)。(1)求的值;(2)設(shè)對任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)設(shè)時(shí),求函數(shù)極大值和極小值;
(2)時(shí)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)是定義在上的偶函數(shù),已知當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的值域。

查看答案和解析>>

同步練習(xí)冊答案