14.已知如下算法:
步驟1:輸入實(shí)數(shù)n;步驟2:若n>2,則計(jì)算y=$\frac{1}{n}$;否則執(zhí)行第三步;
步驟3:計(jì)算y=2n2+1;步驟4:輸出y.
則y的取值范圍是(  )
A.[1,+∞)B.(0,+∞)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)∪[1,+∞)

分析 由題意找到n,y之間的函數(shù)式,即可進(jìn)行計(jì)算.

解答 解:由題意:輸入實(shí)數(shù)n;
若n>2,則計(jì)算y=$\frac{1}{n}$;
若n≤2,則計(jì)算y=2n2+1;
由此可得n,y之間的函數(shù)式為$y=\left\{{\begin{array}{l}{\frac{1}{n}({n>2})}\\{2{n^2}+1({n≤2})}\end{array}}\right.∴y∈({0,\frac{1}{2}})∪[{1.+∞})$
故選D.

點(diǎn)評(píng) 本題考查了算法以及函數(shù)求值域問(wèn)題.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)集合A={1,2,3,4,5,6,7,8},B={4,7,8,9},求A∪B,A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)f(x)=cos2x的圖象向右平移$\frac{π}{4}$個(gè)單位后得到函數(shù)g(x),則g(x)具有性質(zhì)( 。
A.最大值為1,圖象關(guān)于直線$x=\frac{π}{2}$對(duì)稱B.在$({-\frac{3π}{8},\frac{π}{8}})$上單調(diào)遞增,為偶函數(shù)
C.周期為π,圖象關(guān)于點(diǎn)$({\frac{3π}{8},0})$對(duì)稱D.在$({0,\frac{π}{4}})$上單調(diào)遞增,為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某幾何體的三視圖如圖,則該幾何體外接球的球面面積為( 。
A.B.C.D.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在棱長(zhǎng)為2 的正方體ABCD-A1B1C1D1中,P是體對(duì)角線BD1的中點(diǎn),Q在棱CC1上運(yùn)動(dòng),則|PQ|min=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某校高一(1)班的課外生物研究小組通過(guò)互聯(lián)網(wǎng)上獲知,某種珍稀植物的種子在一定條件下發(fā)芽成功率為$\frac{1}{3}$,小組依據(jù)網(wǎng)上介紹的方法分小組進(jìn)行驗(yàn)證性實(shí)驗(yàn)(每次實(shí)驗(yàn)相互獨(dú)立).
(1)第一小組共做了5次種子發(fā)芽實(shí)驗(yàn)(每次均種下一粒種子),求5次實(shí)驗(yàn)至少有3次成功的概率;
(2)第二小組在老師的帶領(lǐng)下做了若干次實(shí)驗(yàn)(每次均種下一粒種子),如果在一次實(shí)驗(yàn)中,種子發(fā)芽成功則停止實(shí)驗(yàn);否則將繼續(xù)進(jìn)行下去,直到種子發(fā)芽成功為止,而該小組能供實(shí)驗(yàn)的種子只有n顆(n≥5,n∈N*).求第二小組所做的實(shí)驗(yàn)次數(shù)ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過(guò)定點(diǎn)$(1,\frac{3}{2})$,以其四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積等于以其兩個(gè)短軸端點(diǎn)和兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形面積的2倍.
(Ⅰ)求此橢圓的方程;
(Ⅱ)若直線x+y+1=0與橢圓交于A,B兩點(diǎn),x軸上一點(diǎn)P(m,0),使得∠APB為銳角,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|x=k+$\frac{1}{2}$,k∈Z},集合B={x|x=$\frac{k}{2}$+1,k∈Z},集合C={x|x=$\frac{k+1}{2}$,k∈Z},試判斷集合A、B、C的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)集合A={x|(x-2m+1)(x-m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案