分析 設(shè)C(x,y),由$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$,列出方程組,能求出C點坐標.
解答 解:平面內(nèi)有A(-2,1),B(1,4),
設(shè)C(x,y),∵$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$,
∴(x+2,y-1)=($\frac{1-x}{2}$,$\frac{4-y}{2}$),
∴$\left\{\begin{array}{l}{x+2=\frac{1-x}{2}}\\{y-1=\frac{4-y}{2}}\end{array}\right.$,解得x=-1,y=2,
∴C(-1,2).
故答案為:(-1,2).
點評 本題考點的坐標的求法,是基礎(chǔ)題,解題時要認真審題,注意平面向量坐標運算法則的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}-\sqrt{2}$ | B. | $\sqrt{10}+\sqrt{2}$ | C. | $\sqrt{10}$+2 | D. | $\sqrt{10}-2$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | cos10° | C. | $\frac{1}{2}$ | D. | -cos10° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com