已知函數(shù)f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,那么f{f[f(-1)]}=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)自變量所屬的范圍,將x的值代入相應(yīng)段中,求出值.
解答: 解:∵f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,
∴f(-1)=0;
f[f(-1)]=f(0)=
2
,
f{f[f(-1)]}=f(
2
)
=2
故答案為:2
點(diǎn)評:本題考查分段函數(shù)求函數(shù)值,關(guān)鍵是判定出自變量所屬的范圍,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
10-x(x≤0)
lgx(x>0)
,則f[f(
1
10
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-2<0},B={x|x>0},則集合A∪B等于( 。
A、{x|x>-2}
B、{x|0<x<1}
C、{x|x<1}
D、{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下三個關(guān)于圓錐曲線的命題:
①設(shè)A、B是兩定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動點(diǎn)P的軌跡為雙曲線;
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).
其中是真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)F(x)=f(x)-ag(x)(a為常數(shù)),f(x)=
ex
x2
,g(x)=
2
x
+lnx,(e是自然對數(shù)的底數(shù),e=2.71828).
(Ⅰ)求曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程;
(Ⅱ)當(dāng)a≤0時(shí),求函數(shù)F(x)的最大值和最小值;
(Ⅲ)若函數(shù)F(x)在(0,2)內(nèi)存在兩個極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(a-2)x2+2(a-2)x-4<0對一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是圓O:x2+y2=1上任意的不同三點(diǎn),若
OA
=3
OB
+x
OC
,則正實(shí)數(shù)x的取值范圍為( 。
A、(0,2)
B、(1,4)
C、(2,4)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行六面體ABCD-EFGH中,
AG
=x
AC
+y
AF
+z
AH
,則x+y+z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:“三角形的三內(nèi)角中至少有一個不大于60度”時(shí),反設(shè)是“假設(shè)三角形的三內(nèi)角
 
.”

查看答案和解析>>

同步練習(xí)冊答案