【題目】如圖所示,在多面體中,矩形所在平面與直角梯形所在平面垂直,,的中點(diǎn),且.

(1)求證:平面;

(2)求直線(xiàn)與平面所成角的正弦值.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)要證平面,即證,構(gòu)造四邊形,證明其為平行四邊形即可;

(2)為原點(diǎn),分別以、、,,軸,建立空間直角坐標(biāo)系,利用空間向量法即可求出直線(xiàn)與平面所成角的正弦值.

(1)證明:如圖,

的中點(diǎn),連結(jié).

的中點(diǎn),的中點(diǎn).

.

,.∴.

∴四邊形是平行四邊形,∴.

又∵平面,平面.

平面.

(2)∵平面平面,平面平面

平面.∴,.

,∴.

如圖,以為原點(diǎn),分別以、、,,軸,建立空間直角坐標(biāo)系

,,,,,,,

,.

設(shè)平面的一個(gè)法向量為,

,令,得,,∴.

,∴.

∴直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求的值域;

(2)若存在唯一的整數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)點(diǎn)P

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知斜率為1的直線(xiàn)l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,的中點(diǎn)

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)為線(xiàn)段上一點(diǎn),,若直線(xiàn)與平面所成角的正弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且橢圓的短軸長(zhǎng)為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線(xiàn)的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線(xiàn)為原點(diǎn))與橢圓交于點(diǎn),滿(mǎn)足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線(xiàn)的右焦點(diǎn)為,右頂點(diǎn)為.

(1)求雙曲線(xiàn)的方程;

(2)若直線(xiàn)與雙曲線(xiàn)恒有兩個(gè)不同的交點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,點(diǎn)為邊的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C過(guò)點(diǎn) ,兩個(gè)焦點(diǎn)

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)直線(xiàn)l交橢圓C于A,B兩點(diǎn),且|AB|=6,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案