精英家教網 > 高中數學 > 題目詳情
已知正方體外接球表面積是,則此正方體邊長為                 
4

試題分析:設正方體的邊長為,則體對角線長為.由題意,得,所以
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱中,,,.

(1)證明:;
(2)若,,求三棱柱的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.

(1)求證:BCAD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個最大值及此時棱長AD的大小;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知三棱錐中,,,直線與底面所成角為,則此時三棱錐外接球的表面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

棱長為4的正方體的八個頂點都在同一個球面上,則此球的表面積為_____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

右圖是棱長為2的正方體的表面展開圖,則多面體的體積為(      )
A.2B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在棱長為的正方體中,點分別是矩形的中心,則過點、的平面截正方體的截面面積為______

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

四面體的六條棱中,有五條棱長都等于a.
(1)求該四面體的體積的最大值;
(2)當四面體的體積最大時,求其表面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果兩個球的體積之比為8:27,那么兩個球的表面積之比為(  )
A.8:27B.2:3C.4:9D.2:9

查看答案和解析>>

同步練習冊答案