【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .
【答案】(1)當(dāng)時(shí), 在內(nèi)單調(diào)遞增;當(dāng)時(shí), 在內(nèi)單調(diào)遞減,在, 內(nèi)單調(diào)遞增;(2)見解析.
【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,對(duì)進(jìn)行討論可得函數(shù)單調(diào)性;(2)由函數(shù)的導(dǎo)函數(shù)可知, 又是的零點(diǎn),代入相減化簡(jiǎn)得,對(duì)求導(dǎo), .令,求得函數(shù).不等式得證.
試題解析:(1)由于的定義域?yàn)?/span>,則.對(duì)于方程,其判別式.當(dāng),即時(shí), 恒成立,故在內(nèi)單調(diào)遞增.當(dāng),即,方程恰有兩個(gè)不相等是實(shí),令,得或,此時(shí)單調(diào)遞增;令,得,此時(shí)單調(diào)遞減.
綜上所述,當(dāng)時(shí), 在內(nèi)單調(diào)遞增;當(dāng)時(shí), 在內(nèi)單調(diào)遞減,在, 內(nèi)單調(diào)遞增.
(2)由(1)知, ,所以的兩根, 即為方程的兩根.因?yàn)?/span>,所以, , .又因?yàn)?/span>, 為的零點(diǎn),
所以, ,兩式相減得,得.而,所以 .
令,由得,因?yàn)?/span>,兩邊同時(shí)除以,得,因?yàn)?/span>,故,解得或,所以.設(shè),所以,則在上是減函數(shù),所以,
即的最小值為.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形ABC的頂點(diǎn)坐標(biāo)為A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB邊上的高線所在的直線方程;
(2)求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示.圓的圓心與矩形對(duì)角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(, 為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,且.設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時(shí),求邊的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對(duì)象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬(wàn)步”活動(dòng)的慰問對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)元,超健康生活方式者表彰獎(jiǎng)勵(lì)元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問獎(jiǎng)勵(lì)金額恰好為元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對(duì)象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬(wàn)步”活動(dòng)的慰問對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)元,超健康生活方式者表彰獎(jiǎng)勵(lì)元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問獎(jiǎng)勵(lì)金額恰好為元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 是否存在實(shí)數(shù)p,q,r,對(duì)于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cosxsin(x+ )﹣ .
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對(duì)的邊為a,b,c,f( )= ,B= ,a=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市司法部門為了宣傳《憲法》舉辦法律知識(shí)問答活動(dòng),隨機(jī)對(duì)該市18~68歲的人群抽取一個(gè)容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號(hào)為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對(duì)回答問題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知△ABC的面積為3 ,b﹣c=2,cosA=﹣ .
(1)求a和sinC的值;
(2)求cos(2A+ )的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com