已知某商品進價為a元/件,根據(jù)以往經(jīng)驗,當售價是b(b≥
43
a)元/件時,可賣出c件.市場調(diào)查表明,當售價下降10%時,銷量可增加40%,現(xiàn)決定一次性降價,銷售價為多少時,可獲得最大利利潤.
分析:設(shè)銷售價為x元/件,它比售價b元下降了10y%,根據(jù)x=b(1-10y%),可得10y%=
b-x
b
,從而可求出賣出c(1+40y%)=c+4c
b-x
b
,進而得利潤函數(shù)L(x)=(x-a)( c+4c
b-x
b
)=c(x-a)(5-
4
b
x),a<x<
5b
4
.利用求導的方法,可求函數(shù)L(x)的極大值點,而且也是最大值點.故得解.
解答:解:設(shè)銷售價為x元/件,它比售價b元下降了10y%,
從而x=b(1-10y%),故10y%=
b-x
b

由題意此時可賣出m件,則m=c(1+40y%)=c+4c
b-x
b
,
從而利潤L(x)=(x-a)( c+4c
b-x
b
)=c(x-a)(5-
4
b
x),a<x<
5b
4

令L′(x)=-
8c
b
x+
4ac+5bc
b
=0,解得x=
4a+5b
8

當x∈(a,
4a+5b
8
)時,L′(x)>0;當x∈(
4a+5b
8
,
5b
4
)時,L′(x)<0.
因此x=
4a+5b
8
是函數(shù)L(x)的極大值點,也是最大值點.
所以,銷售價為
4a+5b
8
元/件時,可獲得最大利潤.
答:銷售價為
4a+5b
8
元/件時,可獲得最大利潤.
點評:本題以實際問題為載體,考查函數(shù)模型的構(gòu)建,考查導數(shù)法的運用.最大銷售利潤的問題常利用函數(shù)的增減性來解答,要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某商品進價為a元/件,根據(jù)以往經(jīng)驗,當售價是b(b≥
4
3
a)元/件時,可賣出c件.市場調(diào)查表明,當售價下降10%時,銷量可增加40%,現(xiàn)決定一次性降價,銷售價為多少時,可獲得最大利利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年山東省濟南市高中數(shù)學模塊檢測數(shù)學試卷(選修2-2)(解析版) 題型:解答題

已知某商品進價為a元/件,根據(jù)以往經(jīng)驗,當售價是b(b≥a)元/件時,可賣出c件.市場調(diào)查表明,當售價下降10%時,銷量可增加40%,現(xiàn)決定一次性降價,銷售價為多少時,可獲得最大利利潤.

查看答案和解析>>

同步練習冊答案