2.已知命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根;命題q:關(guān)于x的函數(shù)y=(m+2)x-1是R上的單調(diào)增函數(shù),若“p或q”是真命題,“p且q”是假命題,則實數(shù)m的取值范圍為(-∞,-2]∪[1,+∞).

分析 求出命題p為真時m的取值范圍,再求出命題q為真時m的取值范圍,
根據(jù)“p或q”是真命題,“p且q”是假命題,得出p與q一真一假,從而求出m的取值范圍.

解答 解:命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根,
∴△=4-4m>0,解得m<1;
命題q:函數(shù)y=(m+2)x-1是R上的單調(diào)增函數(shù),
∴m+2>0,解得m>-2;
若“p或q”是真命題,“p且q”是假命題,
∴p與q一真一假;
當(dāng)p真q假時,$\left\{\begin{array}{l}{m<1}\\{m≤-2}\end{array}\right.$,解得m≤-2.
當(dāng)q真p假時,$\left\{\begin{array}{l}{m≥1}\\{m>-2}\end{array}\right.$,解得m≥1.
∴實數(shù)m的取值范圍是m≤-2或m≥1.
故答案為:(-∞,-2]∪[1,+∞).

點評 本題考查了簡易邏輯的判定語句一元二次方程的實數(shù)根與一次函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為:$ρ=\frac{4cosθ}{{1-{{cos}^2}θ}}$,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t為參數(shù),0≤α<π).
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C交于兩點A,B,且線段AB的中點為M(2,2),求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當(dāng)a=-1時,證明:h(x)為奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3[g(x)]有兩個不等實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x∈N*|x2-5x-6<0},集合B={x|3≤x≤6},則A∩B=( 。
A.{1,2,3,4,5}B.{3,4,5}C.{3,4,5,6}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某港口水的深度y(m)是時間t(0≤t≤24,單位:h)的函數(shù),記作y=f(t).下面是某日水深的數(shù)據(jù):
t/h03691215182124
y/m1013107101310710
經(jīng)長期觀察,y=f(t)的曲線可以近似地看成函數(shù)y=Asinωt+b的圖象.一般情況下,船舶航行時,船底離海底的距離為5m或5m以上時認為是安全的(船舶?繒r,船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為6.5m,如果該船希望在同一天內(nèi)安全進出港,請問,它最多能在港內(nèi)停留( 。┬r(忽略進出港所需的時間).
A.6B.12C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知tanα=$\sqrt{2}$,α為第三象限角,則$\sqrt{2}$sinα+cosα=( 。
A.-$\sqrt{2}$B.-2$\sqrt{2}$C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.8B.9C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow$=(3,4),$\overrightarrow{a}$•$\overrightarrow$=-3,則向量$\overrightarrow{a}$在向量$\overrightarrow$的方向上的投影是-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐P-ABC中,PA⊥PC,PB=AB=BC=2,∠ABC=120°,$PC=\sqrt{3}$,D為AC上一點,且AD=3DC.
(1)求證:PD⊥平面ABC;
(2)若E為PA中點,求直線CE與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案