2.下面是關(guān)于復(fù)數(shù)$\frac{1+z}{1-z}$=i(i為虛數(shù)單位)的四個(gè)命題:其中的真命題為(  )
p1:|z|=$\sqrt{2}$ p2:z2=-1 p3:z的共軛復(fù)數(shù)為1+i p4:z的虛部為1.
A.p2,p3 B.p1,p2C.p2,p4D.p3,p4

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得z,然后逐一核對(duì)四個(gè)命題得答案.

解答 解:由$\frac{1+z}{1-z}$=i,得1+z=(1-z)i=i-zi,
∴(1+i)z=-1+i,則z=$\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=i$,
∴|z|=1,故p1錯(cuò)誤;z2=i2=-1,故p2正確;$\overline{z}=-i$,故p3錯(cuò)誤;z的虛部為1,故p4正確.
故選:C.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓O:x2+y2=1,點(diǎn)P(x0,y0)在直線l:x-y+2=0上.若在圓O上存在點(diǎn)Q,使∠OPQ=30°,則x0的取值范圍是( 。
A.[-2,0]B.[-1,2]C.$[{0,\sqrt{2}}]$D.$[{-1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,d=1,S98=137,則a2+a4+a6+…+a98=93.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點(diǎn)$({1,\frac{7π}{6}})$關(guān)于直線$θ=\frac{π}{4}({ρ∈R})$的對(duì)稱點(diǎn)的極坐標(biāo)為( 。
A.$({1,\frac{4π}{3}})$B.$({1,\frac{2π}{3}})$C.$({1,\frac{π}{3}})$D.$({1,-\frac{7π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.式子$cos\frac{π}{4}cos\frac{π}{12}-sin\frac{π}{4}sin\frac{π}{12}$的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,a=3,b=5,A=120°,則△ABC解的個(gè)數(shù)為( 。
A.2B.1C.0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值,(其中m,n為常數(shù)且mn≠0),給出下列命題:
①$f(x+\frac{π}{4})$為偶函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)$(\frac{7π}{4},0)$對(duì)稱;
③$f(-\frac{3π}{4})$是函數(shù)f(x)的最小值;
④記函數(shù)f(x)的圖象在y右側(cè)與直線$y=\frac{m}{2}$的交點(diǎn)按橫坐標(biāo)從小到大依次記為P1,P2,P3,P4,…,則|P2P4|=π;
⑤$\frac{n}{m}=1$.
其中真命題的有幾個(gè)?(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計(jì)算:$\frac{{lg\sqrt{27}+lg8-lo{g_4}8}}{{\frac{1}{2}lg0.3+lg2}}$;
(2)f(x)滿足f(x+1)+f(x-1)=x2-4x,試求f(x
)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d,a20,an

查看答案和解析>>

同步練習(xí)冊(cè)答案