設∪={x∈N|x≤20},A={x∈N|x是偶數(shù)},B={x∈N|x是質數(shù)},則C(A∪B)=( 。
分析:利用集合中元素的屬性寫出相應的集合是解決本題的關鍵.利用列舉法寫出相應的集合,通過交集、并集、補集的定義正確的求出相應的集合.
解答:解:A={2,4,6,8,10,12,14,16,18,20},B={2,3,5,7,11,13,17,19},
因此C(A∪B)={1,9,15}
故選:C
點評:本題屬于集合運算的基本題型,正確列舉出集合A,B是解決本題的關鍵.用好交集、并集、補集的定義求出相應的集合.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、設x∈R,用[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[5.1]=5、則下列對函數(shù)f(x)=[x]所具有的性質說法正確的有
①②③④
.填上正確的編號)①定義域是R,值域是Z;②若x1≤x2,則[x1]≤[x2];③[n+x]=n+[x],其中n∈Z;④[x]≤x<[x]+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設[x]表示不超過x的最大整數(shù),如[2]=2,[
5
4
]=1,對于給定的n∈N*,定義Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則C
3
28
=
 
;當x∈[2,3)時,函數(shù)Cx8的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省沈陽市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

設x∈R,用[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[5.1]=5、則下列對函數(shù)f(x)=[x]所具有的性質說法正確的有    .填上正確的編號)①定義域是R,值域是Z;②若x1≤x2,則[x1]≤[x2];③[n+x]=n+[x],其中n∈Z;④[x]≤x<[x]+1.

查看答案和解析>>

同步練習冊答案