已知函數(shù)f(x)=x+xlnx.
(1)求函數(shù)f(x)的圖象在點(diǎn)(1,1)處的切線方程;
(2)若k∈Z,且k(x-1)<f(x)對(duì)任意x>1恒成立,求k的最大值.

解:(1)因?yàn)楹瘮?shù)f(x)=x+xlnx,所以f'(x)=lnx+2,所以f'(1)=2,
則函數(shù)f(x)的圖象在點(diǎn)(1,1)處的切線方程y-1=2(x-1),即2x-y-1=0;
(2)因?yàn)閒(x)=x+xlnx,所以k(x-1)<f(x)對(duì)任意x>1恒成立,
即k(x-1)<x+xlnx,因?yàn)閤>1,
也就是對(duì)任意x>1恒成立.
,則
令h(x)=x-lnx-2(x>1),則
所以函數(shù)h(x)在(1,+∞)上單調(diào)遞增.
因?yàn)閔(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一實(shí)根x0,且滿足x0∈(3,4).
當(dāng)1<x<x0時(shí),h(x)<0,即g'(x)<0,當(dāng)x>x0時(shí),h(x)>0,即g'(x)>0,
所以函數(shù)在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增.
所以=

所以k<[g(x)]min=x0
因?yàn)閤0∈(3,4).故整數(shù)k的最大值是3.
分析:(1)求出函數(shù)的導(dǎo)函數(shù),進(jìn)一步得到f(1)的值,由直線方程的點(diǎn)斜式寫出直線方程;
(2)把函數(shù)f(x)的解析式代入k(x-1)<f(x),整理后得k,問題轉(zhuǎn)化為對(duì)任意x∈(1,+∞),k恒成立,求正整數(shù)k的值.設(shè)函數(shù)g(x)=,求其導(dǎo)函數(shù),得到其導(dǎo)函數(shù)的零點(diǎn)x0位于(3,4)內(nèi),且知此零點(diǎn)為函數(shù)g(x)的最小值點(diǎn),經(jīng)求解知g(x0)=x0,從而得到k<x0,則正整數(shù)k的最大值可求.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,考查了數(shù)學(xué)轉(zhuǎn)化思想,解答此題的關(guān)鍵是,在求解(2)時(shí)如何求解函數(shù)g(x)=的最小值,學(xué)生思考起來有一定難度.此題屬于難度較大的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案