設(shè)直線l:
x=1+t
y=1+k•t
(t為參數(shù)),以坐標原點為極點,x軸非負半軸為極軸建立極坐標系,圓C:ρ=2cosθ+4sinθ,則直線l與圓C相交最短弦長為
 
考點:直線的參數(shù)方程
專題:坐標系和參數(shù)方程
分析:把參數(shù)方程、極坐標化為直角坐標方程,求出弦心距的最大值,利用弦長公式可得弦長的最小值.
解答: 解:把直線l:
x=1+t
y=1+k•t
 (t為參數(shù)),消去參數(shù),化為直角坐標方程為kx-y-k=0,
圓C:ρ=2cosθ+4sinθ,即 ρ2=2ρcosθ+4ρsinθ,化為直角坐標方程為 (x-1)2+(y-2)2=5,
表示以(1,2)為圓心,半徑為
5
的圓.
由于弦心距d=
|k-2-k|
k2+1
=
2
k2+1
≤2,故弦長最短為 2
r2-d2
=2
5-4
=2,
故答案為:2.
點評:本題主要考查把參數(shù)方程、極坐標化為直角坐標方程的方法,點到直線的距離公式、弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)條件 p:A={x|x2-3x-4<0},條件q:B={x|-a≤x≤a+1},若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+ax-4a<0”為假命題,是“-16≤a≤0”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)y=3-
x-1
5-2x
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將25個數(shù)排成如圖所示的正方形:
已知第一行a11,a12,a13,a14,a15成等差數(shù)列,而每一列a1j,a2j,a3j,a4j,a5j(1≤j≤5)都成等比數(shù)列,且五個公比全相等.若a24=4,a41=-2,a43=10,則a11×a55的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若ξ~N(-1,62),且P(-3≤ξ≤-1)=0.4,則P(ξ≥1)等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
,
b
滿足
a
=(4,3),2
a
+
b
=(3,18),則向量
a
,
b
夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(n)=k(其中n∈N*)k是π的小數(shù)點后的第n位數(shù)字,π=3.141 592 653 5…,則{f…f[f(10)]}=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-cos2x(x∈R),則將f(x)的圖象向右平移
π
3
個單位所得曲線的一條對稱軸的方程是(  )
A、x=
π
6
B、x=
π
4
C、x=
π
2
D、x=π

查看答案和解析>>

同步練習冊答案