數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為 .
【答案】
分析:由數(shù)列的前n項(xiàng)和求通項(xiàng)公式,做法都是一樣的,第n項(xiàng)的表達(dá)式由前n項(xiàng)和減去前n-1項(xiàng)和求得,只是解題時(shí)不要忽略首項(xiàng)要代入通項(xiàng)驗(yàn)證看是否符合,若不符合則要寫成分段函數(shù)形式.
解答:解:∵a
n=s
n-s
n-1(n≥2),
∴a
n=4n-1(n≥2),
當(dāng)n=1時(shí),a
1=s
1=2,
∴當(dāng)n=1時(shí),a
n=2;當(dāng)n≥2時(shí),a
n=4n-1.
故答案為:a
n=
點(diǎn)評(píng):有這樣的規(guī)律,若題目所給的前n項(xiàng)和是關(guān)于n的二次函數(shù),且不含常數(shù)項(xiàng),則數(shù)列是等差數(shù)列,首項(xiàng)滿足通項(xiàng),不用分段寫,若所給的前n項(xiàng)和是關(guān)于n的二次函數(shù),且含常數(shù)項(xiàng),則所給的數(shù)列除首項(xiàng)外是等差數(shù)列,通項(xiàng)要分段寫.