在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=2,DD1=2
2
,則AC1與面BDD1所成角的大小是
π
4
π
4
分析:通過(guò)建立空間直角坐標(biāo)系,利用平面的法向量與斜向量
AC1
的夾角公式即可得出.
解答:解:如圖所示,
  建立空間直角坐標(biāo)系,由長(zhǎng)方體可得,∴DD1⊥AC.
由底面ABCD為矩形,AB=BC=2,∴四邊形ABCD為正方形,∴AC⊥BD,
而B(niǎo)D∩DD1=D,∴AC⊥平面BDD1B1
∴可取
AC
=(-2,2,0)
作為平面BDD1B1的法向量.
AC1
=(-2,2,2
2
)

設(shè)AC1與面BDD1所成角為θ.
sinθ=|cos<
AC1
AC
>|
=
|
AC1
AC
|
|
AC1
| |
AC
|
=
8
4+4+8
8
=
2
2

由圖形可知:θ為銳角,∴θ=
π
4

故答案為
π
4
點(diǎn)評(píng):熟練掌握通過(guò)建立空間直角坐標(biāo)系利用平面的法向量與斜向量的夾角公式求線面角的方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,用截面截下一個(gè)棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海) 如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(理)在長(zhǎng)方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知在長(zhǎng)方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案