已知圓錐底面的半徑為1,側(cè)面展開圖是一個圓心角為
3
的扇形,則該圓錐的側(cè)面積是
 
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:空間位置關(guān)系與距離
分析:根據(jù)已知中圓錐底面的半徑為1,側(cè)面展開圖是一個圓心角為
3
的扇形,計算出圓錐母線的長度,進而可得該圓錐的側(cè)面積.
解答: 解:∵圓錐底面的半徑r=1,側(cè)面展開圖是一個圓心角為
3
的扇形,
故圓錐的母線l滿足:
r
l
=
3
,
解得:l=3,
∴該圓錐的側(cè)面積S=πrl=3π.
故答案為:3π
點評:本題考查的知識點是旋轉(zhuǎn)體,圓錐的側(cè)面積,其中根據(jù)
r
l
=
3
,求出圓錐的母線長度,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x1,x2,max{x1,x2}表示x1,x2中較大的那個數(shù),則當x∈R時,函數(shù)f(x)=max{2-x2,x},x∈[-3,
1
2
]的最大值與最小值的差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+1|+|x-2|>a的解集是全體實數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,am•am+10=a,am+50•am+60=b,m∈N*,則am+125•am+135=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a3+a4+a5=42,a8=30.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=(
3
)an+2
+λ(λ∈R),則是否存在這樣的實數(shù)λ使得{bn}為等比數(shù)列;
(3)數(shù)列{cn}滿足{cn}=
2n-1,n為奇數(shù)
1
2
an-1,n為偶數(shù)
,Tn為數(shù)列{cn}的前n項和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-3x2+x≤2的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

上海出租車的價格規(guī)定:起步費14元,可行3公里,3公里以后按每公里2.4元計算,可再行7公里;超過10公里按每公里3.6元計算,假設(shè)不考慮堵車和紅綠燈等所引起的費用,也不考慮實際收取費用去掉不足一元的零頭等實際情況,即每一次乘車的車費由行車里程唯一確定.
(1)小明乘出租車從學(xué)校到家,共8公里,請問他應(yīng)付出租車費多少元?(本小題只需要回答最后結(jié)果)
(2)求車費y(元)與行車里程x(公里)之間的函數(shù)關(guān)系式y(tǒng)=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=
1
x
,求曲線在點P(1,1)處的切線方程,求滿足斜率為-
1
4
的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(2-x)=log2(x+2).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性并加以證明;
(3)若f(x)<log2(ax)在x∈[
1
2
,1]上恒成立,求實數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案