一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個球.若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中隨機(jī)取出一球所得分?jǐn)?shù)ξ的分布列.

解:設(shè)黃球的個數(shù)為n,依題意知綠球個數(shù)為2n,紅球個數(shù)為4n,盒中球的總數(shù)為7n.

Pξ=1)==Pξ=-1)==,Pξ=0)==.

∴從該盒中隨機(jī)取出一球所得分?jǐn)?shù)ξ的分布列為

ξ

1

-1

0

P


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中隨機(jī)取出一球所得分?jǐn)?shù)ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時(shí)函數(shù)g(x)只有兩個零點(diǎn),所以(1)不對

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)

(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點(diǎn)對稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對。所以正確的只有(2)

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半,現(xiàn)在從該盒中隨機(jī)取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分?jǐn)?shù)Y的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)選修2-3 2.1離散性隨機(jī)變量分布列練習(xí)卷(解析版) 題型:解答題

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半.現(xiàn)從該盒中隨機(jī)取出一個球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分?jǐn)?shù)的分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第90課時(shí)):第十章 排列、組合和概率-隨機(jī)變量的分布列、期望和方差(解析版) 題型:解答題

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中隨機(jī)取出一球所得分?jǐn)?shù)ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案